2.4GHz to 2.5GHz 802.11g/b RF Transceiver, PA, and Rx/Tx/Antenna Diversity Switch

General Description

The MAX2830 direct conversion, zero-IF, RF transceiver is designed specifically for 2.4 GHz to $2.5 \mathrm{GHz} 802.11 \mathrm{~g} / \mathrm{b}$ WLAN applications. The MAX2830 completely integrates all circuitry required to implement the RF transceiver function, providing an RF power amplifier (PA), an $R x / T x$ and antenna diversity switch, RF-to-baseband receive path, baseband-to-RF transmit path, voltage-controlled oscillator (VCO), frequency synthesizer, crystal oscillator, and baseband/control interface. The MAX2830 includes a fast-settling sigma-delta RF synthesizer with smaller than 20 Hz frequency steps and a digitally tuned crystal oscillator allowing use of a low-cost crystal. No I/Q calibration is required; however, the device also integrates on-chip DC-offset cancellation and I/Q errors and carrier leakage-detection circuits for improved performance. Only an RF bandpass filter (BPF), crystal, a pair of baluns, and a small number of passive components are needed to form a complete $802.11 \mathrm{~g} / \mathrm{b}$ WLAN RF frontend solution.

The MAX2830 completely eliminates the need for an external SAW filter by implementing on-chip monolithic filters for both the receiver and transmitter. The baseband filters are optimized to meet the IEEE 802.11 g standard and proprietary turbo modes up to 40 MHz channel bandwidth. These devices are suitable for the full range of 802.11 g OFDM data rates (6 Mbps to 54 Mbps) and 802.11b QPSK and CCK data rates (1Mbps to 11Mbps). The ICs are available in a small, 48-pin TQFN package measuring only $7 \mathrm{~mm} \times 7 \mathrm{~mm} \times 0.8 \mathrm{~mm}$.

Applications
Wi-Fi, PDA, VOIP, and Cellular Handsets
Wireless Speakers and Headphones
General 2.4GHz ISM Radios

- 2.4GHz to 2.5 GHz ISM Band Operation
- IEEE 802.11g/b Compatible (54Mbps OFDM and 11 Mbps CCK)
- Complete RF Transceiver, PA, Rx/Tx and Antenna Diversity Switch, and Crystal Oscillator Best-in-Class Transceiver Performance 62mA Receiver Current
3.3dB Rx Noise Figure
-75dBm Rx Sensitivity (54Mbps OFDM)
No I/Q Calibration Required
$0.1 \mathrm{~dB} / 0.35^{\circ}$ Rx I/Q Gain/Phase Imbalance
33dB RF and 62dB Baseband Gain Control Range
60dB Range Analog RSSI per RF Gain Setting
Fast Rx I/Q DC-Offset Settling
Programmable Baseband Lowpass Filter
20-Bit Sigma-Delta Fractional-N PLL with < 20Hz Step Size
Digitally Tuned Crystal Oscillator
+17.1dBm Transmit Power (5.6\% EVM with 54Mbps OFDM)
31dB Tx Gain Control Range
Integrated Power Detector
Fully Integrated RF Input and Output
Matching and DC Blocking
Serial or Parallel Gain-Control Interface $>40 \mathrm{~dB}$ Tx Sideband Suppression Without Calibration
Rx/Tx I/Q Error Detection
- Transceiver Operates from +2.7V to +3.6V
- PA Operates from +2.7V to +4.2V
- Low-Power Shutdown Mode
- Small 48-Pin TQFN Package
($7 \mathrm{~mm} \times 7 \mathrm{~mm} \times 0.8 \mathrm{~mm}$)
Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX $2830 E T M+\mathrm{T}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 TQFN-EP*

*EP = Exposed paddle.
+Denotes a lead(Pb)-free/RoHS-compliant package.
T = Tape and reel.

Pin Configuration appears at end of data sheet.

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maximintegrated.com.

2.4GHz to 2.5GHz 802.11 g/b RF Transceiver, PA, and Rx/Tx/Antenna Diversity Switch

ABSOLUTE MAXIMUM RATINGS

$V_{C C T X P A, ~ V C C P A, ~ a n d ~ A N T ~}^{\text {_ }}$, to GND-0.3V to +4.5 V Vcclna, Vcctxmx, Vccpll, Vcccp, Vccxtal, Vccvco, VCCRXVGA, VCCRXFL, and VCCRXMX_ to GND...-0.3V to +3.9 V B6, B7, B3, B2, SHDN, B5, CS, SCLK, DIN, B1, TUNE, B4, ANTSEL, TXBBI_, TXBBQ_, RXHP, RXTX, RXBBI_, RXBBQ_, RSSI, BYPASS, CPOUT, LD, CLOCKOUT, XTAL, CTUNE to GND-0.3V to (Operating $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$)
RXBBI_, RXBBQ_, RSSI, BYPASS, CPOUT, LD, CLOCKOUT Short-Circuit Duration \qquad .10s

RF Input Power .. Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) 48-Pin TQFN (derates $27.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $\ldots2 .22 \mathrm{~W}$ Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Junction Temperature Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$ Soldering Temperature (reflow)

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION! ESD SENSITIVE DEVICE

DC ELECTRICAL CHARACTERISTICS

(MAX2830 EV kit, $\mathrm{V}_{C C}=2.7 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\text {CCPA }}=\mathrm{V}_{\text {CCTXPA }}=2.7 \mathrm{~V}$ to $4.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Rx set to the maximum gain. $\overline{\mathrm{CS}}=$ high, RXHP = SCLK = DIN = ANTSEL = low, RSSI and clock output buffer are off, no signal at RF inputs, all RF inputs and outputs terminated into 50Ω, receiver baseband outputs are open. 100 mV RMS differential I and Q signals (54Mbps IEEE 802.11g OFDM) applied to I/Q baseband inputs of transmitter in transmit mode, $\mathrm{f}_{\mathrm{REF}}=40 \mathrm{MHz}$, and registers set to recommended settings and corresponding test mode, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=2.8 \mathrm{~V}, \mathrm{~V}_{C C P A}=3.3 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, LO frequency $=$ 2.437 GHz , unless otherwise noted. RF inputs/outputs specifications are referenced to device pins and do not include 1 dB loss from EV kit PCB, balun, and SMA connectors.) (Note 1)

PARAMETERS	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage	VCC_		2.7		3.6	V
	VCCPA, VCCTXPA		2.7		4.2	
Supply Current	Shutdown mode, B7: B1 $=0000000$, reference oscillator not applied	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		20		$\mu \mathrm{A}$
	Standby mode	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		28	35	mA
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			35	
	Rx mode	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		62	78	
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			82	
	$\begin{aligned} & \mathrm{Tx} \text { mode, } \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{CC}}=2.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCPA}}= \\ & \text { 3.3V (Note 2) } \\ & \hline \end{aligned}$	Transmit section		82	104	
		PA, POUT $=+17.1 \mathrm{dBm}$		212		
	Rx calibration mode	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		101		
	Tx calibration mode	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		78		
Rx I/Q Output Common-Mode Voltage	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ at default common-mode setting		0.94	1.2	1.37	V
Rx I/Q Output Common-Mode Voltage Variation	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ (relative to $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)			-17		mV
	$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ (relative to $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)			15		
Tx Baseband Input CommonMode Voltage Operating Range	DC-coupled		0.9		1.3	V
Tx Baseband Input Bias Current	Source current				22	$\mu \mathrm{A}$

2.4GHz to 2.5GHz 802.11 g/b RF Transceiver, PA, and Rx/Tx/Antenna Diversity Switch

DC ELECTRICAL CHARACTERISTICS (continued)

(MAX2830 EV kit, $\mathrm{VCC}_{-}=2.7 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V}$ CCPA $=\mathrm{V}$ CCTXPA $=2.7 \mathrm{~V}$ to $4.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Rx set to the maximum gain. $\overline{\mathrm{CS}}=$ high, RXHP = SCLK = DIN = ANTSEL = low, RSSI and clock output buffer are off, no signal at RF inputs, all RF inputs and outputs terminated into 50Ω, receiver baseband outputs are open. 100 mV RMS differential I and Q signals (54Mbps IEEE 802.11g OFDM) applied to I/Q baseband inputs of transmitter in transmit mode, fREF $=40 \mathrm{MHz}$, and registers set to recommended settings and corresponding test mode, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=2.8 \mathrm{~V}, \mathrm{~V}_{C C P A}=3.3 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, LO frequency $=$ 2.437 GHz , unless otherwise noted. RF inputs/outputs specifications are referenced to device pins and do not include 1 dB loss from EV kit PCB, balun, and SMA connectors.) (Note 1)

PARAMETERS	CONDITIONS	MIN	TYP	MAX	UNITS
LOGIC INPUTS: $\overline{\text { SHDN, }}$ RXTX, SCLK, DIN, $\overline{\mathbf{C S}}$, B7:B1, RXHP, ANTSEL					
Digital Input-Voltage High, $\mathrm{V}_{\text {IH }}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 0.4 \end{gathered}$			V
Digital Input-Voltage Low, $\mathrm{V}_{\text {IL }}$				0.4	V
Digital Input-Current High, $\mathrm{IIH}^{\mathrm{H}}$		-1		+1	$\mu \mathrm{A}$
Digital Input-Current Low, I/L		-1		+1	$\mu \mathrm{A}$
LOGIC OUTPUTS: LD, CLOCKOUT					
Digital Output-Voltage High, $\mathrm{VOH}^{\text {OH}}$	Sourcing 100 ${ }^{\text {A }}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 0.4 \end{gathered}$			V
Digital Output-Voltage Low, VOL	Sinking 100 ${ }^{\text {A }}$			0.4	V

AC ELECTRICAL CHARACTERISTICS-Rx Mode

(MAX2830 EV kit, $\mathrm{V}_{C C}=2.8 \mathrm{~V}, \mathrm{~V} \mathrm{CCPA}=\mathrm{V}_{\mathrm{CCTXPA}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{RF}}=2.439 \mathrm{GHz}$, $\mathrm{fLO}=2.437 \mathrm{GHz}$; receiver baseband I/Q outputs at 112 mV RMS $(-19 \mathrm{dBV}), f_{\text {REF }}=40 \mathrm{MHz}, \overline{S H D N}=\overline{\mathrm{CS}}=$ high, $\mathrm{RXTX}=$ SCLK $=\mathrm{DIN}=$ low, with power matching for the differential RF pins using the typical applications and registers set to default settings and corresponding test mode, unless otherwise noted. Unmodulated single-tone RF input signal is used with specifications that normally apply over the entire operating conditions, unless otherwise indicated. RF inputs/outputs specifications are referenced to device pins and do not include 1 dB loss from EV kit PCB, balun, and SMA connectors.) (Note 1)

PARAMETER	CONDITIONS		MIN TYP	MAX	UNITS
RECEIVER SECTION: LNA RF INPUT-TO-BASEBAND I/Q OUTPUTS					
RF Input Frequency Range			2.4	2.5	GHz
RF Input Return Loss (ANT1)	High RF gain		13		dB
	Mid RF gain		16		
	Low RF gain		13		
RF Input Return Loss (ANT2)	High RF gain		21		dB
	Mid RF gain		14		
	Low RF gain		12		
Total Voltage Gain (ANT1)	Maximum gain, $\mathrm{B} 7: \mathrm{B} 1=$ 1111111	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$86 \quad 97$		dB
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	83		
	Minimum gain, B7:B1 = 0000000	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	2	8	
Total Voltage Gain (ANT2)	Maximum gain, B7:B1 = 1111111	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	96		dB
	Minimum gain, B7:B1 = 0000000	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	2		

2.4GHz to 2.5GHz 802.11g/b RF Transceiver, PA, and Rx/Tx/Antenna Diversity Switch

AC ELECTRICAL CHARACTERISTICS-Rx Mode (continued)

(MAX2830 EV kit, $\mathrm{VCC}_{-}=2.8 \mathrm{~V}, \mathrm{VCCPA}=\mathrm{VCCTXPA}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{fRF}=2.439 \mathrm{GHz}, \mathrm{fLO}=2.437 \mathrm{GHz}$; receiver baseband I/Q outputs at 112 mV RMS $(-19 \mathrm{dBV}), \mathrm{f}_{\text {REF }}=40 \mathrm{MHz}, \overline{S H D N}=\overline{\mathrm{CS}}=$ high, $\mathrm{RXTX}=\mathrm{SCLK}=\mathrm{DIN}=$ low, with power matching for the differential RF pins using the typical applications and registers set to default settings and corresponding test mode, unless otherwise noted. Unmodulated single-tone RF input signal is used with specifications that normally apply over the entire operating conditions, unless otherwise indicated. RF inputs/outputs specifications are referenced to device pins and do not include 1dB loss from EV kit PCB, balun, and SMA connectors.) (Note 1)

2.4GHz to 2.5GHz 802.11 g/b RF Transceiver, PA, and Rx/Tx/Antenna Diversity Switch

AC ELECTRICAL CHARACTERISTICS—Rx Mode (continued)

(MAX2830 EV kit, $\mathrm{VCC}_{C}=2.8 \mathrm{~V}, \mathrm{VCCPA}=\mathrm{VCCTXPA}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{fRF}=2.439 \mathrm{GHz}$, fLO $=2.437 \mathrm{GHz}$; receiver baseband I/Q outputs at 112 mV RMS $(-19 \mathrm{dBV}), \mathrm{f}_{\text {REF }}=40 \mathrm{MHz}, \overline{S H D N}=\overline{\mathrm{CS}}=$ high, $\mathrm{RXTX}=\mathrm{SCLK}=\mathrm{DIN}=$ low, with power matching for the differential RF pins using the typical applications and registers set to default settings and corresponding test mode, unless otherwise noted. Unmodulated single-tone RF input signal is used with specifications that normally apply over the entire operating conditions, unless otherwise indicated. RF inputs/outputs specifications are referenced to device pins and do not include 1dB loss from EV kit PCB, balun, and SMA connectors.) (Note 1)

PARAMETER	CONDITIONS		MIN TYP	MAX	UNITS	
I/Q Output DC Droop	After switching RXHP to 0, D13:D12, Register 7 (A3:AO = 0111)		± 1		V/s	
I/Q Static DC Offset	$\mathrm{RXHP}=1, \mathrm{~B} 7: \mathrm{B} 1=1101110,1 \sigma$ variation		± 1		mV	
Spurious Signal Emissions from LNA input	$\mathrm{RF}=1 \mathrm{GHz}$ to 26.5 GHz		-51		dBm	
ANT to Receiver Isolation	ANT1 to receiver (in ANT2 mode)		20		dB	
	ANT2 to receiver (in ANT1 mode)		47			
RECEIVER BASEBAND FILTERS						
Gain Ripple in Passband	10 kHz to 8.5 MHz at baseband		± 1.3		dBP-p	
Group-Delay Ripple in Passband	10 kHz to 8.5 MHz at baseband		± 45		nsp-p	
Baseband Filter Rejection (Nominal Mode)	At 8.5 MHz		3.2		dB	
	At 15 MHz		27			
	At 20 MHz		50			
	At $>40 \mathrm{MHz}$		80			
RSSI						
RSSI Minimum Output Voltage	RLOAD $\geq 10 \mathrm{k} \Omega \\| 5 \mathrm{pF}$		0.4		V	
RSSI Maximum Output Voltage	RLOAD $\geq 10 \mathrm{k} \Omega \\| 5 \mathrm{pF}$		2.4		V	
RSSI Slope	To within 3dB of steady $\quad+32 \mathrm{~dB}$ signal step		30		$\mathrm{mV} / \mathrm{dB}$	
RSSI Output Settling Time			200		ns	
	To within 3dB of steady state	-32dB signal step	600			

2.4GHz to 2.5GHz 802.11 g/b RF Transceiver, PA, and Rx/Tx/Antenna Diversity Switch

AC ELECTRICAL CHARACTERISTICS-Tx Mode

$\left(\mathrm{MAX2830} \mathrm{EV}\right.$ kit, $\mathrm{VCC}_{-}=2.8 \mathrm{~V}, \mathrm{VCCPA}=\mathrm{VCCTXPA}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{fRF}=2.439 \mathrm{GHz}, \mathrm{fLO}=2.437 \mathrm{GHz} . \mathrm{fREF}=40 \mathrm{MHz}, \overline{\mathrm{SHDN}}=$ RXTX $=\overline{\mathrm{CS}}=$ ANTSEL $=$ high, and SCLK $=$ DIN $=$ low, with power matching for the differential RF pins using the typical applications circuit. 100 mV RMS sine and cosine signal (or 100 mV RMS 54 Mbps IEEE $802.11 \mathrm{~g} \mathrm{I} / \mathrm{Q}$ signals wherever OFDM is mentioned) applied to baseband I/Q inputs of transmitter (differential DC-coupled). Registers set to recommend settings and corresponding test mode, unless otherwise noted. RF inputs/outputs specifications are referenced to device pins and do not include 1 dB loss from EV kit PCB, balun, and SMA connectors.) (Note 1)

PARAMETER	CONDITIONS				MIN	TYP	MAX	UNITS	
TRANSMIT SECTION: Tx BASEBAND I/Q INPUTS TO RF OUTPUTS									
RF Output Frequency Range					2.4		2.5	GHz	
Output Power	54Mbps 802.11g OFDM signal		Output power adjusted to meet 5.6\%EVM, and spectral mask			17.1		dBm	
	6Mbits, OFDM, I/Q signals		Output power adjusted to meet spectral mask			20.3			
Gain Control Range	B6:B1 $=000000$ to 111000					26		dB	
Unwanted Sideband Suppression	Without I/Q calibration, B6:B1 = 100001					-42		dBc	
Carrier Leakage at Center Frequency of Channel	Without DC offset correction					-30		dBc	
Transmitter Spurious Signal Emissions	$\begin{aligned} & \text { B6:B1 = 111000, } \\ & \text { OFDM signal } \end{aligned}$	$1 / 3 \times \mathrm{fLO}$				-67		dBm/MHz	
		$<1 \mathrm{GHz}$				-36			
		> 1GHz				-47			
		$2 / 3 \times \mathrm{fLO}$				-64			
		$4 / 3 \times \mathrm{fLO}$				-42			
		$5 / 3 \times \mathrm{fLO}$				-65			
		$8 / 3 \times \mathrm{fLO}$				-55			
		$2 \times \mathrm{fLO}$				-27			
		$3 \times \mathrm{fLO}$				-54			
RF Output Return Loss	Off-chip balun and single ended					-15		dB	
Tx I/Q Input Load Impedance ($\mathrm{R} \\| \mathrm{C}$)	Minimum differential resistance					20		$\mathrm{k} \Omega$	
	Maximum differential capacitance					0.7		pF	
Baseband -3dB Corner Frequency	$\begin{aligned} & \text { D1:D0 = 01, Register } 8 \\ & \text { (A3:A0 = 1000) } \end{aligned}$			Nominal mode		11		MHz	
Baseband Filter Rejection	At 30MHz, in nominal mode					62		dB	
Minimum Power-Detector Output Voltage	Short sequence transmitter power $=+10 \mathrm{dBm}$					0.35		V	
Maximum Power-Detector Output Voltage	Short sequence transmitter power $=+20 \mathrm{dBm}$					1.2		V	
RF Power-Detector Response Time						0.3		$\mu \mathrm{s}$	

2.4GHz to 2.5GHz 802.11g/b RF Transceiver, PA, and Rx/Tx/Antenna Diversity Switch

AC ELECTRICAL CHARACTERISTICS-Tx Mode (continued)

(MAX2830 EV kit, $\mathrm{VCC}_{C}=2.8 \mathrm{~V}, \mathrm{VCCPA}=\mathrm{VCCTXPA}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{fRF}=2.439 \mathrm{GHz}, \mathrm{fLO}=2.437 \mathrm{GHz} . \mathrm{fREF}=40 \mathrm{MHz}, \overline{\mathrm{SHDN}}=$ RXTX $=\overline{\mathrm{CS}}=$ ANTSEL $=$ high, and SCLK $=$ DIN = low, with power matching for the differential RF pins using the typical applications circuit. 100 mV RMS sine and cosine signal (or 100 mV RMS 54 Mbps IEEE $802.11 \mathrm{~g} \mathrm{I} / \mathrm{Q}$ signals wherever OFDM is mentioned) applied to baseband I/Q inputs of transmitter (differential DC-coupled). Registers set to recommend settings and corresponding test mode, unless otherwise noted. RF inputs/outputs specifications are referenced to device pins and do not include 1dB loss from EV kit PCB, balun, and SMA connectors.) (Note 1)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
TRANSMITTER LO LEAKAGE AND I/Q CALIBRATION USING LO LEAKAGE AND SIDEBAND DETECTOR (see the Rx/Tx Calibration Mode section)						
Tx BASEBAND I/Q INPUTS TO RECEIVER OUTPUTS						
LO Leakage and Sideband Detector Output	$\begin{aligned} & \text { Calibration register, } \\ & \text { D12:D11 }=00, \\ & \text { A3:A0 }=0110 \end{aligned}$	$\begin{aligned} & \text { Output at } 1 \times \text { fTONE (for LO } \\ & \text { leakage }=-29 \mathrm{dBc} \text {), } \\ & \text { fTONE }=2 \mathrm{MHz}, 100 \mathrm{mV} \text { RMS } \end{aligned}$		-34		$\mathrm{dBV}_{\text {RMS }}$
		Output at $2 \times$ fTONE (for LO leakage $=-240 \mathrm{dBc}$), $\mathrm{fTONE}=2 \mathrm{MHz}, 100 \mathrm{mV}$ RMS		-44		
Amplifier Gain Range	D12:D11 = 00 to D12:D11 = 11, A3:A0 = 0110			30		dB
Lower -3dB Corner Frequency				1		MHz

2.4GHz to 2.5GHz 802.11g/b RF Transceiver, PA, and Rx/Tx/Antenna Diversity Switch

AC ELECTRICAL CHARACTERISTICS-Frequency Synthesizer

(MAX2830 EV kit, $\mathrm{VCC}_{-}=2.7 \mathrm{~V}, \mathrm{VCCPA}=\mathrm{VCCTXPA}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{fLO}=2.437 \mathrm{GHz}$, fREF $=40 \mathrm{MHz}, \overline{\mathrm{SHDN}}=\overline{\mathrm{CS}}=$ high, $\mathrm{SCLK}=$ DIN = low, PLL loop bandwidth $=150 \mathrm{kHz}$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS	
FREQUENCY SYNTHESIZER							
RF Channel Center Frequency			2.4		2.5	GHz	
Channel Center Frequency Programming Minimum Step Size			20			Hz	
Charge-Pump Comparison Frequency			20			MHz	
Reference Frequency Range			20		44	MHz	
Reference Frequency Input Levels	AC-coupled to XTAL pin		800			mVP-P	
Reference Frequency Input Impedance (R \|	C)	Resistance (XTAL)		5			$\mathrm{k} \Omega$
	Capacitance (XTAL)		4			pF	
Closed-Loop Phase Noise	fofFSET $=1 \mathrm{kHz}$		-86			$\mathrm{dBc} / \mathrm{Hz}$	
	foffset $=10 \mathrm{kHz}$		-94				
	fofFSET $=100 \mathrm{kHz}$		-94				
	foFFSET $=1 \mathrm{MHz}$		-110				
	foFFSET $=10 \mathrm{MHz}$		-120				
Closed-Loop Integrated Phase Noise	RMS phase jitter; integrate from 10 kHz to 10 MHz offset		0.9			Degrees	
Charge-Pump Output Current				1		mA	
Reference Spurs	20MHz offset			-55		dBc	
VCO Frequency Error	Measured from Tx-Rx or Rx-Tx transition	$3 \mu \mathrm{~s}$ to $9 \mu \mathrm{~s}$	50			kHz	
		> $9 \mu \mathrm{~s}$					
VOLTAGE-CONTROLLED OSCILLATOR							
Pushing	Referred to $2400 \mathrm{MHz} \mathrm{LO}, \mathrm{V}_{\text {cc }}$ varies by 0.3 V		210			kHz	
LO Tuning Gain	$\mathrm{V}_{\text {TUNE }}=0.5 \mathrm{~V}$			103		MHz/V	
	$V_{\text {TUNE }}=2.2 \mathrm{~V}$		86				

2.4GHz to 2.5GHz 802.11 g/b RF Transceiver, PA, and Rx/Tx/Antenna Diversity Switch

AC ELECTRICAL CHARACTERISTICS-Miscellaneous Blocks

$\left(\right.$ MAX2830 EV kit, $\mathrm{VCC}_{-}=2.8 \mathrm{~V}, \mathrm{VCCPA}=\mathrm{VCCTXPA}=3.3 \mathrm{~V}, \mathrm{fLO}=2.437 \mathrm{GHZ}, \mathrm{fREF}=40 \mathrm{MHz}, \overline{\mathrm{SHDN}}=\overline{\mathrm{CS}}=$ high, $\mathrm{SCLK}=\mathrm{DIN}=$ low, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	CONDITIONS		MIN TYP	MAX	UNITS
CRYSTAL OSCILLATOR					
On-Chip Tuning Capacitance Range	Maximum capacitance, $\mathrm{A} 3: \mathrm{AO}=1110, \mathrm{D} 6: \mathrm{DO}=1111111$		15.4		pF
	Minimum capacitance, $\mathrm{A}: \mathrm{AO}=1110, \mathrm{D} 6: \mathrm{DO}=0000000$		0.5		
On-Chip Tuning Capacitance Step Size			0.12		pF
ON-CHIP TEMPERATURE SENSOR					
Output Voltage	$A 3: A 0=1000, D 9: D 8=01$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$	0.35		V
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	1		
		$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$	1.6		

AC ELECTRICAL CHARACTERISTICS-Timing

(MAX2830 EV kit, $\mathrm{V}_{C C}=2.8 \mathrm{~V}, \mathrm{~V} C \mathrm{CPA}=\mathrm{V}_{\text {CCTXPA }}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{LO}}=2.437 \mathrm{GHz}, \mathrm{f}_{\mathrm{REF}}=40 \mathrm{MHz}, \overline{\mathrm{SHDN}}=\overline{\mathrm{CS}}=$ high, $\mathrm{SCLK}=$ DIN = low, PLL loop bandwidth $=150 \mathrm{kHz}$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
SYSTEM TIMING (see Figure 3)						
Turn-On Time	From $\overline{\text { SHDN }}$ rising edge to LO settled within 1 kHz using external reference frequency input			60		$\mu \mathrm{s}$
Crystal Oscillator Turn-On Time	90\% of final output amplitude level			1		ms
Channel Switching Time	Loop BW = 150kHz, frF $=2.5 \mathrm{GHz}$ to 2.4 GHz			25		$\mu \mathrm{s}$
Rx/Tx Turnaround Time	Measured from Tx or Rx enable rising edge; signal settling to within $\pm 2 \mathrm{~dB}$ of steady state	Rx to Tx		2		
		Tx to Rx, RXHP = 1		2		
Tx Turn-On Time (from Standby Mode)	From Tx-enable active rising edge; signal settling to within $\pm 2 \mathrm{~dB}$ of steady state			1.5		$\mu \mathrm{S}$
Tx Turn-Off Time (from Standby Mode)	From Tx-enable inactive rising edge			1		$\mu \mathrm{s}$
Rx Turn-On Time (from Standby Mode)	From Rx-enable active rising edge; signal settling to within $\pm 2 \mathrm{~dB}$ of steady state			1.9		$\mu \mathrm{S}$
Rx Turn-Off Time (from Standby Mode)	From Rx-enable inactive rising edge			0.1		$\mu \mathrm{s}$

2.4GHz to 2.5GHz 802.11 g/b RF Transceiver, PA, and Rx/Tx/Antenna Diversity Switch

AC ELECTRICAL CHARACTERISTICS—Timing (continued)

(MAX2830 EV kit, VCC_ $=2.8 \mathrm{~V}, \mathrm{VCCPA}=\mathrm{VCCTXPA}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{fLO}^{2}=2.437 \mathrm{GHz}, \mathrm{fREF}=40 \mathrm{MHz}, \overline{\mathrm{SHDN}}=\overline{\mathrm{CS}}=$ high, $\mathrm{SCLK}=$ DIN = low, PLL loop bandwidth $=150 \mathrm{kHz}$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
3-WIRE SERIAL-INTERFACE TIMING (see Figure 2)					
SCLK Rising Edge to $\overline{\mathrm{CS}}$ Falling Edge Wait Time, tcso			6		ns
Falling Edge of $\overline{\mathrm{CS}}$ to Rising Edge of First SCLK Time, tcss			6		ns
DIN to SCLK Setup Time, tDS			6		ns
DIN to SCLK Hold Time, tDH			6		ns
SCLK Pulse-Width High, tch			6		ns
SCLK Pulse-Width Low, tCL			6		ns
Last Rising Edge of SCLK to Rising Edge of $\overline{\mathrm{CS}}$ or Clock to Load Enable Setup Time, tcSH			6		ns
$\overline{\overline{C S}}$ High Pulse Width, tcsw			20		ns
Time Between the Rising Edge of $\overline{\mathrm{CS}}$ and the Next Rising Edge of SCLK, tcs 1			6		ns
Clock Frequency, fCLK			20		MHz
Rise Time, tR			2		ns
Fall Time, tF			2		ns

Note 1: Min and max limits are guaranteed by test above $T_{A}=+25^{\circ} \mathrm{C}$ and guaranteed by design and characterization at $T_{A}=-40^{\circ} \mathrm{C}$.
The power-on register settings are not production tested. Recommended register setting must be loaded after VCC is supplied.
Note 2: Guaranteed by design and characterization.
Note 3: The nominal part-to-part variation of the RF gain step is $\pm 1 \mathrm{~dB}$.
Note 4: Two tones at +25 MHz and +48 MHz offset with $-35 \mathrm{dBm} /$ tone. Measure IM 3 at 2 MHz .
Note 5: Tx I/Q inputs $=100 \mathrm{mV}$ RMs.

2.4GHz to 2.5GHz 802.11g/b RF Transceiver, PA, and Rx/Tx/Antenna Diversity Switch

Typical Operating Characteristics
(MAX2830 EV kit, $\mathrm{V}_{C C}=2.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCPA}}=\mathrm{V}_{\text {CCTXPA }}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{fLO}_{\mathrm{LO}}=2.437 \mathrm{GHz}, \mathrm{f}_{\mathrm{REF}}=40 \mathrm{MHz}, \overline{\mathrm{SHDN}}=\overline{\mathrm{CS}}=$ high, $\mathrm{RXHP}=$ SCLK = DIN = low.)

Rx IN-BAND OUTPUT P - 1dB vs. GAIN

OFDM EVM WITH OFDM JAMMER vs. OFFSET FREQUENCY

NOISE FIGURE
vs. BASEBAND GAIN SETTINGS

Rx EVM vs. PIN

Rx EMISSION SPECTRUM, LNA INPUT

Rx VOLTAGE GAIN vs. BASEBAND GAIN SETTING

Rx EVM vs. Vout

LNA INPUT RETURN LOSS vs. RF FREQUENCY (ANT 1)

MAX2830

2.4GHz to 2.5GHz 802.11g/b RF Transceiver, PA, and Rx/Tx/Antenna Diversity Switch

Typical Operating Characteristics (continued)
$\left(\mathrm{MAX2830} \mathrm{EV}\right.$ kit, $\mathrm{V}_{\mathrm{CC}}=2.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCPA}}=\mathrm{V}_{\mathrm{CC}}$ TXPA $=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{LO}}=2.437 \mathrm{GHz}, \mathrm{f}_{\mathrm{REF}}=40 \mathrm{MHz}, \overline{\mathrm{SHDN}}=\overline{\mathrm{CS}}=$ high, RXHP $=$ SCLK = DIN = low.)

2.4GHz to 2.5GHz 802.11g/b RF Transceiver, PA, and Rx/Tx/Antenna Diversity Switch

Typical Operating Characteristics (continued)

$\left(\right.$ MAX2830 EV kit, $V_{C C}=2.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCPA}}=\mathrm{V}_{\mathrm{CC}}$ TXPA $=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{LO}}=2.437 \mathrm{GHz}, \mathrm{f}_{\mathrm{REF}}=40 \mathrm{MHz}, \overline{\mathrm{SHDN}}=\overline{\mathrm{CS}}=$ high, $\mathrm{RXHP}=$ SCLK = DIN = low.)

MAX2830]
2.4GHz to 2.5GHz 802.11 g/b RF Transceiver, PA, and Rx/Tx/Antenna Diversity Switch

Typical Operating Characteristics (continued)

$\left(\right.$ MAX2830 EV kit, $V_{C C}=2.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCPA}}=\mathrm{V}_{\mathrm{CC}}$ TXPA $=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{LO}}=2.437 \mathrm{GHz}, \mathrm{f}_{\mathrm{REF}}=40 \mathrm{MHz}, \overline{\mathrm{SHDN}}=\overline{\mathrm{CS}}=$ high, $\mathrm{RXHP}=$ SCLK = DIN = low.)

2.4GHz to 2.5GHz 802.11g/b RF Transceiver, PA, and Rx/Tx/Antenna Diversity Switch

Typical Operating Characteristics (continued)

$\left(\right.$ MAX2830 EV kit, $V_{C C}=2.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCPA}}=\mathrm{V}_{\mathrm{CC}}$ TXPA $=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{LO}}=2.437 \mathrm{GHz}, \mathrm{f}_{\mathrm{REF}}=40 \mathrm{MHz}, \overline{\mathrm{SHDN}}=\overline{\mathrm{CS}}=$ high, $\mathrm{RXHP}=$ SCLK = DIN = low.)

MAX2830]
2.4GHz to 2.5GHz 802.11 g/b RF Transceiver, PA, and Rx/Tx/Antenna Diversity Switch

Typical Operating Characteristics (continued)
$\left(\right.$ MAX2830 EV kit, $V_{C C}=2.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCPA}}=\mathrm{V}_{\mathrm{CC}}$ CXPA $=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{LO}}=2.437 \mathrm{GHz}, \mathrm{f}_{\mathrm{REF}}=40 \mathrm{MHz}, \overline{\mathrm{SHDN}}=\overline{\mathrm{CS}}=$ high, RXHP $=$ SCLK = DIN = low.)

LO PHASE NOISE vs. OFFSET FREQUENCY

PLL SETTLING TIME FROM SHUTDOWN TO STANDBY MODE

CHANNEL SWITCHING FREQUENCY SETTLING (FROM 2500MHz TO 2400MHz)

PLL SETTLING TIME FROM STANDBY TO Tx

2.4GHz to 2.5GHz 802.11 g/b RF Transceiver, PA, and Rx/Tx/Antenna Diversity Switch

Typical Operating Characteristics (continued)

$\left(\right.$ MAX2830 EV kit, $\mathrm{V}_{C C}=2.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCPA}}=\mathrm{V}_{\mathrm{CC}}$ TXPA $=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{LO}}=2.437 \mathrm{GHz}, \mathrm{f}_{\mathrm{REF}}=40 \mathrm{MHz}, \overline{\mathrm{SHDN}}=\overline{\mathrm{CS}}=$ high, RXHP $=$ SCLK = DIN = low.)

Tx-Rx TURNAROUND PLL SETTLING TIME

CRYSTAL-OSCILLATOR OFFSET FREQUENCY vs. CRYSTAL-OSCILLATOR TUNING BITS

MAX2830
2.4GHz to 2.5GHz 802.11 g/b RF Transceiver, PA, and Rx/Tx/Antenna Diversity Switch

Block Diagram/Typical Operating Circuit

2.4GHz to 2.5 GHz 802.11 g/b RF Transceiver, PA, and Rx/Tx/Antenna Diversity Switch

Pin Description

PIN	NAME	FUNCTION
1	VCCLNA	LNA Supply Voltage
2	GNDRXLNA	LNA Ground
3	B6	Receiver and Transmitter Gain-Control Logic-Input Bit 6
4	ANT1+	Antenna 1. Differential Input to LNA in Rx mode. Input is internally AC-coupled and matched to 100Ω differential. Connect directly to a 2:1 balun.
5	ANT1-	
6	B7	Receiver Gain-Control Logic-Input Bit 7
7	VCCPA	Supply Voltage for Second Stage of Power Amplifier
8	B3	Receiver and Transmitter Gain-Control Logic-Input Bit 3
9	ANT2+	Antenna 2. Differential inputs to LNA in diversity Rx mode and to PA differential outputs in Tx mode. Internally AC-coupled differential outputs and matched to 100Ω differential. Connect directly to a 2:1 balun.
10	ANT2-	
11	B2	Receiver and Transmitter Gain-Control Logic-Input Bit 2
12	SHDN	Active-Low Shutdown and Standby Logic Input. See Table 32 for operating modes.
13	VCCTXPA	Supply Voltage for First-Stage of PA and PA Driver
14	B5	Receiver and Transmitter Gain-Control Logic-Input Bit 5
15	$\overline{\mathrm{CS}}$	Active-Low Chip-Select Logic Input of 3-Wire Serial Interface (see Figure 3)
16	RSSI	RSSI, PA Power Detector or Temperature-Sensor Multiplexed Analog Output
17	Vсстхмх	Transmitter Upconverter Supply Voltage
18	SCLK	Serial-Clock Logic Input of 3-Wire Serial Interface (see Figure 3)
19	DIN	Data Logic Input of 3-Wire Serial Interface (see Figure 3)
20	VCCPLL	PLL and Registers Supply Voltage. Connect to the supply voltage to retain the register settings.
21	CLOCKOUT	Reference Clock Buffer Output
22	LD	Lock-Detect Logic Output of Frequency Synthesizer. Output high indicates that the frequency synthesizer is locked. Output programmable as CMOS or open-drain output. (See Tables 17 and 21.)
23	B1	Receiver and Transmitter Gain-Control Logic-Input Bit 1
24	CPOUT	Charge-Pump Output. Connect the frequency synthesizer's loop filter between CPOUT and TUNE (see the Block Diagram/Typical Operating Circuit).
25	VCCCP	PLL Charge-Pump Supply Voltage
26	GNDCP	Charge-Pump Circuit Ground
27	VCCXTAL	Crystal Oscillator Supply Voltage
28	XTAL	Crystal or Reference Clock Input. AC-couple a crystal or a reference clock to this analog input.
29	CTUNE	Connection for Crystal Oscillator Off-Chip Capacitors. When using an external reference clock input, leave CTUNE unconnected.
30	Vccvco	VCO Supply Voltage
31	GNDVCO	VCO Ground
32	TUNE	VCO TUNE Input (see the Block Diagram/Typical Operating Circuit)
33	BYPASS	On-Chip VCO Regulator Output Bypass. Bypass with a $0.1 \mu \mathrm{~F}$ to $1 \mu \mathrm{~F}$ capacitor to GND. Do not connect other circuitry to this point.
34	B4	Receiver and Transmitter Gain-Control Logic-Input Bit 4

Pin Description (continued)

PIN	NAME	
35	RXBBQ-	Receiver Baseband Q-Channel Differential Outputs. In TX calibration mode, these pins are the LO leakage
36	RXBBQ+	and sideband detector outputs.

Detailed Description

The MAX2830 single-chip, low-power, direct conversion, zero-IF transceiver is designed to support $802.11 \mathrm{~g} / \mathrm{b}$ applications operating in the 2.4 GHz to 2.5 GHz band The fully integrated transceivers include a receive path, transmit path, VCO, sigma-delta fractional-N synthesizer, crystal oscillator, RSSI, PA power detector, temperature sensor, Rx and Tx I/Q error-detection circuitry, basebandcontrol interface, linear power amplifier, and an $R \times / T x$ antenna diversity switch. The only additional components required to implement a complete radio front-end solution are a crystal, a pair of baluns, a BPF, and a small number of passive components (RCs, no inductors required).

Rx/Tx and Antenna Diversity Switches

 The MAX2830 integrates an Rx/Tx switch and an antenna diversity switch before the receiver and after the power amplifier. See Figure 1 for a block diagram of the switches. The receiver and transmitter enable pin (RXTX) and the antenna selection pin (ANTSEL) determine which ports (ANT1 or ANT2) the receiver or transmitter is connected to. See Table 1 for the Rx/Tx and antenna diversity switches truth table. When RXTX $=0$

Figure 1. Simplified Rx/Tx and Antenna Diversity Switch Structure
(receive mode) and ANTSEL $=0$, the switch provides a low-insertion loss path (main) between the ANT1 port (pins 4 and 5) and the receiver. When RXTX $=0$ (receive mode) and ANTSEL = 1, the switch provides

Table 1. Rx/Tx and Antenna Diversity Switches Operation

RXTX	ANTSEL	MODE	ANTENNA
0	0	Rx (main)	Ant1_
0	1	Rx (diversity)	Ant2_
1	X	Tx	Ant2_

2.4GHz to 2.5GHz 802.11g/b RF Transceiver, PA, and Rx/Tx/Antenna Diversity Switch

an antenna diversity path between the ANT2 port (pins 9 and 10) and the receiver. When RXTX $=1$, the PA and transmit path are automatically connected to the ANT2 port, regardless of the logic state of ANTSEL. For solutions not requiring antenna diversity, set ANTSEL logic-level high, enabling only the ANT2 port for both receive and transmit modes.
The ANT1 and ANT2 differential ports are internally ACcoupled and internally matched to 100Ω. Directly connect 2:1 baluns or balanced bandpass filters (BPFs) to these ports for applications requiring antenna diversity. For applications not requiring antenna diversity, only a single balun or balanced BPF is required on the ANT2 port, and the ANT1 port can be left open. Provide electrically symmetrical input traces to the baluns to maintain IP2 and RF common-mode noise rejection for the receiver, and to maintain a balanced load for the PA.

Receiver

After the switch, the receiver integrates an LNA and VGA with a 95dB digitally programmable gain control range, direct-conversion downconverters, I/Q baseband lowpass filters with programmable LPF corner frequencies, analog RSSI and integrated DC-offset correction circuitry. A logic-low on the RXTX input (pin 48) and a logic-high on the SHDN input (pin 12) enable the receiver.

LNA Gain Control

The LNA has three gain modes: max gain, max gain $-16 d B$, and max gain $-33 d B$. The three LNA gain modes can be serially programmed through the $\mathrm{SPI}^{\text {TM }}$

Table 2. LNA Gain-Control Settings (Pins B7:B6 or Register A3:A0 = 1011, D6:D5)

B7 OR D6	B6 OR D5	NAME	DESCRIPTION
1	1	High	Max gain
1	0	Medium	Max gain - 16dB (typ)
0	X	Low	Max gain - 33dB (typ)

Table 3. Receiver Baseband VGA GainStep Value (Pins B5:B1 or Register D4:D0, A3:A0 = 1011)

PIN/BIT	GAIN STEP (dB)
B1/D0	2
B2/D1	4
B3/D2	8
B4/D3	16
B5/D4	32

SPI is a trademark of Motorola, Inc.
interface by programming bits D6:D5 in Register 11 ($\mathrm{A} 3: \mathrm{A0}=1011$) or programmed in parallel through the digital logic gain-control pins, B7 (pin 6) and B6 (pin 3). Set bit D12 $=1$ in Register $8(\mathrm{~A} 3: \mathrm{A} 0=1000)$ to enable programming through the SPI interface, or set bit D12 = 0 to enable parallel programming. See Table 2 for LNA gain-control settings.

Baseband Variable-Gain Amplifier

The receiver baseband variable-gain amplifiers provide 62 dB of gain control range programmable in 2 dB steps. The VGA gain can be serially programmed through the SPI interface by setting bits D4:D0 in Register 11 (A3:A0 $=1011$) or programmed in parallel through the digital logic gain-control pins, B5 (pin 14), B4 (pin 34), B3 (pin 8), $B 2$ (pin 11), and B1 (pin 23). Set bit D12 $=1$ in Register $8(\mathrm{~A} 3: A 0=1000)$ to enable serial programming through the serial interface or set bit D12 = 0 to enable parallel programming through the external logic pins. See Table 3 for the gain-step value and Table 4 for baseband VGA gain-control settings.

Receiver Baseband Lowpass Filter The receiver integrates lowpass filters that provide an upper -3 dB corner frequency of 8.5 MHz (nominal mode) with 50 dB of attenuation at 20 MHz , and 45 ns of group delay ripple in the passband (10 kHz to 8.5 MHz). The upper -3dB corner frequency is tightly controlled on-chip and does not require user adjustment. However, provisions are made to allow fine tuning of the upper -3 dB

Table 4. Baseband VGA Gain-Control Settings in Receiver Gain-Control Register (Pin B5:B1 or Register D4:D0, A3:A0 = 1011)

B5:B1 OR D4:D0	GAIN
11111	Max
11110	$\operatorname{Max}-2 \mathrm{~dB}$
11101	$\operatorname{Max}-4 \mathrm{~dB}$
$:$	$:$
00000	Min

Table 5. Receiver LPF Coarse -3dB Corner Frequency Settings in Register (A3:A0 = 1000)

BITS (D1:D0)	-3dB CORNER FREQUENCY (MHz)	MODE
00	7.5	11 b
01	8.5	11 g
10	15	Turbo 1
11	18	Turbo 2

2.4GHz to 2.5GHz 802.11 g/b RF Transceiver, PA, and Rx/Tx/Antenna Diversity Switch

corner frequency. In addition, coarse frequency tuning allows the -3 dB corner frequency to be set to 7.5 MHz (11b mode), 8.5 MHz (11g mode), 15 MHz (turbo 1 mode), and 18 MHz (turbo 2 mode) by programming bits D1:D0 in Register $8(\mathrm{A3}: \mathrm{A0}=1000)$. See Table 3. The coarse corner frequency can be fine-tuned approximately $\pm 10 \%$ in 5\% steps by programming bits D2:D0 in Register 7 (A3:A0 = 0111). See Table 6 for receiver LPF fine -3dB corner frequency adjustment.

Baseband Highpass Filter and DC Offset Correction

 The receiver implements programmable AC and nearDC coupling of I/Q baseband signals. Temporary ACcoupling is used to quickly remove LO leakage and other DC offsets that could saturate the receiver outputs. When DC offsets have settled, near DC-coupling is enabled to avoid attenuation of the received signal. AC-coupling is set (-3dB highpass corner frequency of 600 kHz) when a logic-high is applied to RXHP (pin 40). Near DC-coupling is set (-3dB highpass corner frequency of 100 Hz nominal) when a logic-low is applied to RXHP. Bits D13:D12 in Register 7 (A3:A0 = 0111) allow the near DC-coupling -3B highpass corner frequency to be set to $100 \mathrm{~Hz}(\mathrm{D} 13: \mathrm{D} 12=00), 4 \mathrm{kHz}$ (D13:D12 = X1), or 30kHz (D13:D12 = 10). See Table 7.
Table 6. Receiver LPF Fine -3dB Corner Frequency Adjustment in Register (A3:A0 = 0111)

BITS (D2:DO)	\% ADJUSTMENT RELATIVE TO COARSE SETTING
000	90
001	95
010	100
011	105
100	110

Table 7. Receiver Highpass Filter -3dB Corner Frequency Programming

RXHP	A3:A0 = 0111, D13:D12	-3dB HIGHPASS CORNER FREQUENCY (Hz)
1	XX	600 k
0	00	100 (recommended)
0	X 1	4 k
0	10	30 k

[^0]
Receiver I/Q Baseband Outputs

The differential outputs ($\mathrm{RXBBI}+$, RXBBI-, RXBBQ+, RXBBQ-) of the baseband amplifiers have a differential output impedance of $\sim 300 \Omega$, and are capable of driving differential loads up to $10 \mathrm{k} \Omega \| 10 \mathrm{pF}$. The outputs are internally biased to a common-mode voltage of 1.2 V and are intended to be DC-coupled to the inphase (I) and quadrature (Q) analog-to-digital data converter inputs of the accompanying baseband IC. Additionally, the common-mode output voltage can be adjusted from 1.2 V to 1.5 V through programming bits D11:D10 in Register 15 (A3:A0 = 1111).

Received Signal-Strength Indicator (RSSI)
The RSSI output (pin 16) can be programmed to multiplex an analog output voltage proportional to the received signal strength, the PA output power, or the die temperature. Set bits D9:D8 $=00$ in Register 8 $(A 3: A 0=1000)$ to enable the RSSI output in receive mode (off in transmit mode). Set bit D10 $=1$ to enable the RSSI output when RXHP = 1, and disable the RSSI output when RXHP $=0$. Set bit D10 $=0$ to enable the RSSI output independent of RXHP. See Table 8 for a summary of the RSSI output vs. register programming and RXHP.
The RSSI provides an analog voltage proportional to the log of the sum of the squares of the I and Q channels, measured after the receive baseband filters and before the variable-gain amplifiers. The RSSI analog output voltage is proportional to the RF input signal level and LNA gain state over a 60dB range, and is not dependent upon VGA gain. See the Rx RSSI Output vs. Input Power graph in the Typical Operating Characteristics for further details.

Table 8. RSSI Pin Truth Table

INPUT CONDITIONS			RSSI OUTPUT
A3:A0 = 1000, D9:D8	A3:A0 = 1000, D10	RXHP	
X	0	0	No signal
00	0	1	RSSI
01	0	1	Temperature sensor
10	0	1	Power detector
00	1	X	RSSI
01	1	X	Temperature sensor
10	1	X	Power detector

[^1]
2.4GHz to 2.5GHz 802.11 g/b RF Transceiver, PA, and Rx/Tx/Antenna Diversity Switch

Transmitter

The transmitter integrates baseband lowpass filters, direct-upconversion mixers, a VGA, a PA driver, and a linear RF PA with a power detector. A logic-high on the RXTX input (pin 48) and a logic-high on the SHDN input (pin 12) enable the transmitter. The PA outputs are routed to ANT2, regardless of the state at ANTSEL.

Transmitter I/Q Baseband Inputs

The differential analog inputs of the transmitter baseband amplifier I/Q inputs (TXBBI+, TXBBI-, TXBBQ+, TXBBQ-) have a differential impedance of $20 \mathrm{k} \Omega \| 1 \mathrm{pF}$. The inputs require an input common-mode voltage of 0.9 V to 1.3 V , which is provided by the DC-coupled I and Q DAC outputs of the accompanying baseband IC.

Transmitter Baseband Lowpass Filtering

 The transmitter integrates lowpass filters that can be tuned to -3 dB corner frequencies of $8 \mathrm{MHz}(11 \mathrm{~b})$, $11 \mathrm{MHz}(11 \mathrm{~g}), 16.5 \mathrm{MHz}$ (turbo 1 mode), and 22.5 MHz (turbo 2 mode) through programming bits D1:D0 inRegister $8(\mathrm{~A} 3: \mathrm{A0}=1000)$ and bit $\mathrm{D} 5: \mathrm{D} 3$ in Register 7 (A3:A0 $=0111$). The -3 dB corner frequency is tightly controlled on-chip and does not require user adjustment. Additionally, provisions are made to fine tune the -3dB corner frequency through bits D5:D3 in the Filter Programming register $(A 3: A 0=0111)$. See Tables 9 and 10.

Transmitter Variable-Gain Amplifier
The variable-gain amplifier of the transmitter provides 31 dB of gain control range programmable in 0.5 dB steps over the top 8 dB of the gain control range and in 1 dB steps below that. The transmitter gain can be programmed serially through the SPI interface by setting bits D5:D0 in Register $12(\mathrm{A3}: A 0=1100)$ or in parallel through the digital logic gain-control pins B6:B1 (pins $3,6,8,11,14,23$, and 34, respectively). Set bit D10 = 0 in Register $9(\mathrm{~A} 3: \mathrm{AO}=1001)$ to enable parallel programming, and set bit D10 = 1 to enable programming through the 3-wire serial interface. See Table 11 for the transmitter VGA gain-control settings.

Table 9. Transmitter LPF Coarse -3dB Corner Frequency Settings in Register (A3:A0 = 1000)

BITS (D1:D0)	-3dB CORNER FREQUENCY (MHz)	MODE
00	8	11 b
01	11	11 g
10	16.5	Turbo 1
11	22.5	Turbo 2

Table 10. Transmitter LPF Fine -3dB Corner Frequency Adjustment in Register (A3:A0 = 0111)

BITS (D5:D3)	\% ADJUSTMENT RELATIVE TO COARSE SETTING
000	90
001	95
010	100
011	105
100	$110(11 \mathrm{~g})$
101	115
$101-111$	Not used

Table 11. Transmitter VGA Gain-Control Settings

NO.	D5:D0 OR B6:B1	OUTPUT SIGNAL POWER
63	111111	Max
62	111110	Max -0.5 dB
61	111101	Max -1.0 dB
$:$	$:$	$:$
49	110001	Max -7 dB
48	110000	Max -7.5 dB
47	101111	Max -8 dB
46	101110	Max -8 dB
45	101101	Max -9 dB
44	101100	Max -9 dB
$:$	$:$	$:$
5	000101	Max -29 dB
4	000100	Max -29 dB
3	000011	Max -30 dB
2	000010	Max -30 dB
1	000001	Max -31 dB
0	000000	Max -31 dB

MAX2830

2.4GHz to 2.5GHz 802.11 g/b RF Transceiver, PA, and Rx/Tx/Antenna Diversity Switch

Power-Amplifier Bias and Enable Delay

The MAX2830 integrates a 2 -stage PA, providing +17.1 dBm of output power at 5.6% error vector magnitude (EVM) (54Mbps OFDM signal) in 802.11 g mode while exceeding the 802.11 g spectral mask requirements. The first and second stage PA bias currents are set through programming bits D2:D0 and bits D6:D3 in Register 10 (A3:A0 = 1010), respectively. An adjustable PA enable delay, relative to the transmitter enable (RXTX low-to-high transition), can be set from 200ns to $7 \mu \mathrm{~s}$ through programming bits D13:D10 in Register 10 (A3:A0 = 1010).

Power Detector

The MAX2830 integrates a voltage-peak detector at the PA output and before the switch to provide an analog voltage proportional to PA output power. See the Power Detector over Frequency and Power Detector over Supply Voltage graphs in the Typical Operating Characteristics. Set bits D9:D8 = 10 in Register 8 (A3:A0 $=$ 1000) to multiplex the power-detector analog output voltage to the RSSI output (pin 16).

Synthesizer Programming

The MAX2830 integrates a 20-bit sigma-delta fractionalN synthesizer, allowing the device to achieve excellent phase-noise performance ($0.9^{\circ} \mathrm{RMS}$ from 10 kHz to 10 MHz), fast PLL settling times, and an RF frequency step-size of 20 Hz . The synthesizer includes a divide-by-

1 or a divide-by-2 reference frequency divider, an 8-bit integer portion main divider with a divisor range programmable from 64 to 255, and a 20-bit fractional portion main-divider. Bit D2 in Register 5 (A3:A0 = 0101) sets the reference oscillator divider ratio to 1 or 2 . Bits D7:D0 in Register $3(A 3: A 0=0011)$ set the integer portion of the main divider. The 20-bit fractional portion of the main-divider is split between two registers. The 14 MSBs of the fractional portion are set in Register 4 (A3:A0 $=0100$), and the 6 LSBs of the fractional portion of the main divider are set in Register 3 (A3:A0 = 0011). See Tables 12 and 13.

Calculating Integer and Fractional Divider Ratios

 The desired integer and fractional divider ratios can be calculated by dividing the RF frequency (f_{RF}) by $\mathrm{f}_{\mathrm{COMP}}$. For nominal $802.11 \mathrm{~g} / \mathrm{b}$ operation, a 40 MHz reference oscillator is divided by 2 to generate a 20 MHz comparison frequency (f_{COMP}). The following method can be used when calculating divider ratios supporting various reference and comparison frequencies:$$
\begin{gathered}
\qquad \begin{array}{c}
\text { LO Frequency Divider }=f_{\mathrm{RF}} / \mathrm{f}_{\mathrm{COMP}}=2437 \mathrm{MHz} / \\
20 \mathrm{MHz}=121.85 \\
\text { Integer Divider }=121(\mathrm{~d})=01111001 \text { (binary) } \\
\text { Fractional Divider }=0.85 \times\left(2^{20}-1\right)=891289 \text { (decimal) } \\
=11011001100110011001
\end{array}
\end{gathered}
$$

See Table 14 for integer and fractional divider ratios for $802.11 \mathrm{~g} / \mathrm{b}$ systems using a 20 MHz comparison frequency.

Table 12. Integer Divider Register (A3:A0 = 0011)

BIT	RECOMMENDED	
D13:D8	000000	6 LSBs of 20-Bit Fractional Portion of Main Divider
D7:D0	01111001	8-Bit Integer Portion of Main Divider. Programmable from 64 to 255.

Table 13. Fractional Divider Register ($\mathrm{A} 3: \mathrm{AO}=0100$)

BIT	RECOMMENDED	DESCRIPTION
D13:D0	11011001100110	14 MSBs of 20-Bit Fractional Portion of Main Divider

2.4GHz to $2.5 \mathrm{GHz} 802.11 \mathrm{~g} / \mathrm{b}$ RF Transceiver, PA, and Rx/Tx/Antenna Diversity Switch

Table 14. IEEE 802.11g/b Divider-Ratio Programming Words

$\mathbf{f}_{\mathbf{R F}}$ $\mathbf{(M H z)}$	(fRF / fcomp)	INTEGER DIVIDER	FRACTIONAL DIVIDER	
		A3:A0 = 0011, D7:D0	A3:A0 = 0100, D13:D0	A3:A0 = 0011, D13:D8
2412	120.6	01111000 b	2666 h	1 Ah
2417	120.85	01111000 b	3666 h	1 Ah
2422	121.1	01111001 b	0666 h	1 Ah
2427	121.35	01111001 b	1666 h	1 Ah
2432	121.6	01111001 b	2666 h	1 Ah
2437	121.85	01111001 b	3666 h	1 Ah
2442	122.1	01111010 b	0666 h	1 Ah
2447	122.35	01111010 b	1666 h	1 Ah
2452	122.6	01111010 b	2666 h	1 Ah
2457	122.85	01111010 b	3666 h	1 Ah
2462	123.1	01111011 b	0666 h	1 Ah
2467	123.35	01111011 b	1666 h	1 Ah
2472	123.6	01111011 b	2666 h	1 Ah
2484	124.2	01111100 b	0 CCCh	33 h

Crystal Oscillator

The crystal oscillator has been optimized to work with low-cost crystals (e.g., Kyocera CX-3225SB). See Figure 2. The crystal oscillator frequency can be fine tuned through bits D6:D0 in Register 14 (A3:A0 = 1110), which control the value of $\mathrm{C}_{\text {TUNE }}$ from 0.5 pF to 15.4 pF in 0.12 pF steps. See the Crystal-Oscillator Offset Frequency vs. Crystal-Oscillator Tuning Bits graph in the Typical Operating Characteristics. The crystal oscillator can be used as a buffer for an external reference frequency source. In this case, the reference signal is ACcoupled to the XTAL pin, and capacitors C1 and C2 are not connected. When used as a buffer, the XTAL input pin has to be AC-coupled. The XTAL pin has an input impedance of $5 \mathrm{k} \Omega \| 4 \mathrm{pF}$, (set D6:D0 $=0000000$ in Register $14 \mathrm{AB}: \mathrm{AO}=1110$).

Figure 2. Crystal Oscillator Schematic

Reference Clock Output Divider/Buffer
The reference oscillator of the MAX2830 has a divider and a buffered output for routing the reference clock to the accompanying baseband IC. Bit D10 in Register 14 $(A 3: A 0=1110)$ sets the buffer divider to divide by 1 or 2 , independent of the divide ratio for the reference frequency provided to the PLL. Bit B9 in the same register enables or disables the reference buffer output. See the Clock Output waveform in the Typical Operating Characteristics.

Loop Filter The PLL charge-pump output, CPOUT (pin 24), connects to an external third-order, lowpass RC loop-filter, which in turn connects to the voltage tuning input, TUNE (pin 32), of the VCO, completing the PLL loop. The charge-pump output sink and source current is 1 mA , and the VCO tuning gain is $103 \mathrm{MHz} / \mathrm{V}$ at 0.5 V tune voltage and $86 \mathrm{MHz} / \mathrm{V}$ at 2.2 V tune voltage. The RC loop-filter values have been optimized for a loop bandwidth of 150 kHz , to achieve the desired $\mathrm{Rx} / \mathrm{Tx}$ turnaround settling time, while maintaining loop stability and good phase noise. Refer to the MAX2830 EV kit schematic for the recommended loop-filter component values. Keep the line from this pin to the tune input as short as possible to prevent spurious pickup.

Lock-Detector Output

The PLL features a logic lock-detect output. A logic-high indicates the PLL is locked, and a logic-low indicates the PLL is not locked. Bit D5 in Register 5 (A3:A0 = 0101) enables or disables the lock-detect output. Bit

2.4GHz to 2.5GHz 802.11 g/b RF Transceiver, PA, and Rx/Tx/Antenna Diversity Switch

D12 in Register $1(\mathrm{~A} 3: A 0=0001)$ configures the lockdetect output as a CMOS or open-drain output. In opendrain output mode, bit D9 in Register $5(\mathrm{~A} 3: \mathrm{AO}=0101)$ enables or disables an internal $30 \mathrm{k} \Omega$ pullup resistor from the open-drain output.

Programmable Registers and 3-Wire SPI-Interface

 The MAX2830 includes 16 programmable, 18-bit registers. The 14 most significant bits (MSBs) are used for register data. The 4 least significant bits (LSBs) of each register contain the register address. See Table 15 for a summary of the registers and recommended register settings.Register data is loaded through the 3-wire SPI/ MICROWIRE ${ }^{\text {TM }}$-compatible serial interface. Data is shifted in MSB first and is framed by $\overline{\mathrm{CS}}$. When $\overline{\mathrm{CS}}$ is low, the clock is active, and data is shifted with the rising edge of the clock. When $\overline{\mathrm{CS}}$ transitions high, the shift register is latched into the register selected by the contents of the address bits. See Figure 3. Only the last 18 bits shifted into the device are retained in the shift register. No check is made on the number of clock pulses. For programming data words less than 14 bits long, only the required data bits and the address bits need to be shifted, resulting in faster $R x$ and $T x$ gain control where only the LSBs need to be programmed.

Table 15. Recommended Register Settings*

REGISTER	DATA														ADDRESS	TABLE
	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	(A3:A0)	
0	0	1	0	1	1	1	0	1	0	0	0	0	0	0	0000	15
1	0	1	0	0	0	1	1	0	0	1	1	0	1	0	0001	16
2	0	1	0	0	0	0	0	0	0	0	0	0	1	1	0010	17
3	0	0	0	0	0	0	0	1	1	1	1	0	0	1	0011	18
4	1	1	0	1	1	0	0	1	1	0	0	1	1	0	0100	19
5	0	0	0	0	0	0	1	0	1	0	0	1	0	0	0101	20
6	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0110	21
7	0	1	0	0	0	0	0	0	1	0	0	0	1	0	0111	22
8	1	0	0	0	0	0	0	0	1	0	0	0	0	1	1000	23
9	0	0	0	0	1	1	1	0	1	1	0	1	0	1	1001	24
10	0	1	1	1	0	1	1	0	1	0	0	1	0	0	1010	25
11	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1011	26
12	0	0	0	0	0	1	0	1	0	0	0	0	0	0	1100	27
13	0	0	1	1	1	0	1	0	0	1	0	0	1	0	1101	28
14	0	0	0	0	1	1	0	0	1	1	1	0	1	1	1110	29
15	0	0	0	0	0	1	0	1	0	0	0	1	0	1	1111	30

*The power-on register settings are not production tested. Recommended register settings must be loaded after $V_{C C}$ is supplied.

Figure 3. 3-Wire SPI Serial-Interface Timing Diagram

2.4GHz to 2.5 GHz 802.11 g/b RF Transceiver, PA, and Rx/Tx/Antenna Diversity Switch

Table 16. Register $0(A 3: A 0=0000)$

DATA BITS	RECOMMENDED	DESCRIPTION
D13:D11	000	Set to recommended value.
D10	1	Fractional-N PLL Mode Enable. Set 1 to enable the fractional-N PLL or set 0 to enable the integer-N PLL.
D9:D0	1101000000	Set to recommended value.

Table 17. Register 1 (A3:A0 = 0001)

DATA BITS	RECOMMENDED	DESCRIPTION
D13	0	Set to recommended value.
D12	1	Lock-Detector Output Select. Set to 1 for CMOS Output. Set to 0 for open-drain output. Bit D9 in register (A3:A0 = 0101) enables or disables an internal 30k Ω pullup resistor in open-drain output mode.
D11:D0	000110011010	Set to recommended value.

Table 18. Register $2(\mathrm{~A} 3: A 0=0010)$

DATA BITS	RECOMMENDED		DESCRIPTION
D13:D0	01000000000011	Set to recommended value.	

This register contains the 8-bit integer portion and 6 LSBs of the fractional portion of the divider ratio of the synthesizer.
Table 19. Register $3(\mathrm{~A}: \mathrm{AO}=\mathbf{0 0 1 1})$

BIT	RECOMMENDED	
D13:D8	00000	6 LSBs of 20-Bit Fractional Portion of Main Divider
D7:D0	01111001	8-Bit Integer Portion of Main Divider. Programmable from 64 to 255.

Table 20. Register $4(\mathrm{~A} 3: A 0=0100)$

BIT	RECOMMENDED	
D13:D0	11011001100110	14 MSBs of 20-Bit Fractional Portion of Main Divider

Table 21. Register 5 (A3:A0 = 0101)

BIT	RECOMMENDED	
D13:D10	0000	Set to recommended value.
D9	0	Lock-Detect Output Internal Pullup Resistor Enable. Set to 1 to enable internal 30k Ω pullup resistor or set to 0 to disable the resistor. Only available when lock-detect, open-drain output is selected (A3:A0 = 0001, D12 = 1).
D8:D6	010	Set to recommended value.
D5	1	Lock-Detect Output Enable. Set to 1 to enable the lock-detect output or set to 0 to disable the output. The output is high impedance when disabled.
D4:D3	00	Set to recommended value.
D2	1	Reference Frequency Divider Ratio to PLL. Set to 0 to divide by 1. Set to 1 to divide by 2.
D1:D0	00	Set to recommended value.

2.4GHz to 2.5GHz 802.11 g/b RF Transceiver, PA, and Rx/Tx/Antenna Diversity Switch

Table 22. Register $6(A 3: A 0=0110)$

DATA BIT	RECOMMENDED	
D13	0	Set to recommended value.
D12:D11	00	Tx I/Q Calibration LO Leakage and Sideband Detector Gain-Control Bits. D12:D11 = 00: $9 \mathrm{~dB} ;$ $0119 \mathrm{~dB} ; 10: 29 \mathrm{~dB} ; 11: 39 \mathrm{~dB}$.
D10:D7	0000	Set to recommended value.
D6	1	Power-Detector Enable in Tx Mode. Set to 1 to enable the power detector or set to 0 to disable the detector.
D5:D2	1000	Set to recommended value.
D1	0	Tx Calibration Mode. Set to 1 to place the device in Tx calibration mode or 0 to place the device in normal Tx mode when RXTX is set to 1 (see Table 32).
D0	0	Rx Calibration Mode. Set to 1 to place the device in Rx calibration mode or 0 to place the device in normal Rx mode when RXTX is set to 0 (see Table 32).

Table 23. Register $7(A 3: A 0=0111)$

BIT	RECOMMENDED	DESCRIPTION
D13:D12	01	Receiver Highpass Corner Frequency Setting for RXHP $=0$. Set to 00 for $100 \mathrm{~Hz}, \mathrm{X} 1$ for 4 kHz, and 10 for 30kHz.
D11:D6	000000	Set to recommended value.
D5:D3	100	Transmitter Lowpass Filter Corner Frequency Fine Adjustment (Relative to Coarse Setting). See Table 9. Bits D1:D0 in A3:A0 $=1000$ provide the lowpass filter corner coarse adjustment.
D2:D0	010	Receiver Lowpass Filter Corner Frequency Fine Adjustment (Relative to Coarse Setting). See Table 6. Bits D1:D0 in A3:A0 $=1000$ provide the lowpass filter corner coarse adjustment.

Table 24. Register 8 (A3:A0 = 1000)

BIT	RECOMMENDED	DESCRIPTION
D13	1	Set to recommended value.
D12	0	Enable Receiver Gain Programming Through the Serial Interface. Set to 1 to enable programming through the 3-wire serial interface (D6:D0 in Register A3:A0 = 1011). Set to 0 to enable programming in parallel through external digital pins (B7:B1).
D11	0	Set to recommended value.
D10	0	RSSI Operating Mode. Set to 1 to enable RSSI output independent of RXHP. Set to 0 to disable RSSI output if RXHP = 0, and enable the RSSI output if RXHP = 1.
D9:D8	00	RSSI, Power Detector, or Temperature Sensor Output Select. Set to 00 to enable the RSSI output in receive mode. Set to 01 to enable the temperature sensor output in receive and transmit modes. Set to 10 to enable the power-detector output in transmit mode. See Table 7.
D7:D2	001000	Set to recommended value.
D1:D0	01	Receiver and Transmitter Lowpass Filter Corner Frequency Coarse Adjustment. See Tables 4 and 7.

2.4GHz to 2.5 GHz 802.11 g/b RF Transceiver, PA,

 and Rx/Tx/Antenna Diversity SwitchTable 25. Register 9 (A3:A0 = 1001)

BIT	RECOMMENDED	DESCRIPTION
D13:D11	000	Set to recommended value.
D10	0	Enable Transmitter Gain Programming Through the Serial or Parallel Interface. Set to 1 to enable programming through the 3-wire serial interface (D5:D0 in Register A3:A0 = 1011). Set to 0 to enable programming in parallel through external digital pins (B6:B1).
D9:D0	1110110101	Set to recommended value.

Table 26. Register 10 (A3:A0 = 1010)

BIT	RECOMMENDED	DESCRIPTION
D13:D10	0111	Power-Amplifier Enable Delay. Sets a delay between RXTX low-to-high transition and internal PA enable. Programmable in 0.5 s steps. D13:D10 $=0001(0.2 \mu \mathrm{~s})$ and D13:D10 $=1111(7 \mu \mathrm{~s})$.
D9:D7	011	Set to recommended value.
D6:D3	0100	Second-Stage Power-Amplifier Bias Current Adjustment. Set to XXXX for 802.11g/b.
D2:D0	100	First-Stage Power-Amplifier Bias Current Adjustment. Set to XXX for 802.11g/b.

Table 27. Register 11 (A3:A0 = 1011)

BIT	RECOMMENDED	
D13:D7	0000000	Set to recommended value.
D6:D5	11	LNA Gain Control. Set to 11 for high-gain mode. Set to 10 for medium-gain mode, reducing LNA gain by 16dB. Set to 0X for low-gain mode, reducing LNA gain by 33dB.
D4:D0	11111	Receiver VGA Control. Set D4:D0 $=00000$ for minimum gain and D4:D0 $=11111$ for maximum gain.

Table 28. Register $12(A 3: A 0=1100)$

BIT	RECOMMENDED	DESCRIPTION
D13:D6	00000101	Set to recommended value.
D5:D0	000000	Transmitter VGA Gain Control. Set D5:D0 = 000000 for minimum gain, and set D5:D0 = 111111 for maximum gain.

Table 29. Register 13 (A3:A0 = 1101)

BIT	RECOMMENDED	
D13:D10	0011	Set to recommended value.
D9:D6	1010	Set to recommended value.
D5:D0	010010	Set to recommended value.

Table 30. Register $14(A 3: A 0=1110)$

BIT	RECOMMENDED	
D13:D11	000	Set to recommended value.
D10	0	Reference Clock Output Divider Ratio. Set 1 to divide by 2 or set 0 to divide by 1.
D9	1	Reference Clock Output Enable. Set 1 to enable the reference clock output or set 0 to disable.
D8:D7	10	Set to recommended value.
D6:D0	XXXXXXX	Crystal-Oscillator Fine Tune. Tunes crystal oscillator over $\pm 20 \mathrm{ppm}$ to within ± 1 ppm.

$X=$ Don't care.

Table 31. Register 15 (A3:A0 = 1111)

BIT	RECOMMENDED	DESCRIPTION
D13:D12	00	Set to recommended value.
D11:D10	00	Receiver I/Q Output Common-Mode Voltage Adjustment. Set D11:D10 = 00: 1.1V, 01: 1.2V, 10: 1.3V, 11: 1.45V.
D9:D0	0101000101	Set to recommended value.

Table 32. Operating Mode Table

MODE	LOGIC PINS		REGISTER SETTINGS	CIRCUIT BLOCK STATES			
	SHDN	RXTX	D1:D0 (A3:A0 = 0110)	Rx PATH	Tx PATH	PLL, VCO, LO GEN, AUTOTUNER	CALIBRATION SECTIONS ON
	0	0	00	Off	Off	Off	None
Standby	0	1	00	Off	Off	On	None
Rx	1	0	X0	On	Off	On	None
Tx	1	1	$0 X$	Off	On	On	None
Rx Calibration	1	0	$X 1$	On (except LNA)	Upconverters	On	Cal tone, RF phase shift, Tx filter
Tx Calibration	1	1	$1 \times$	Off	On (except PA driver and PA)	On	AM detector, Rx I/Q buffers

$X=$ Don't care.
Note: See Table 1 for $R x / T x$ and antenna diversity operating mode.

Modes of Operation

The modes of operation for the MAX2830 are shutdown, standby, transmit, receive, transmitter calibration, and receiver calibration. See Table 32 for a summary of the modes of operation. The logic-input pins, SHDN (pin 12) and RXTX (pin 48), control the various modes.

Shutdown Mode

The MAX2830 features a low-power shutdown mode that disables all circuit blocks, except the serial-interface and internal registers, allowing the registers to be
loaded and values maintained, as long as V_{CC} is applied. Set SHDN and RXTX logic-low to place the device in shutdown mode. After a supply voltage ramp up, supply current in shutdown mode could be high. Program the default value to SPI register 0 to eliminate high shutdown current.

Standby Mode

The standby mode is used to enable the frequency synthesizer block while the rest of the device is powered down. In this mode, the PLL, VCO, and LO generators

2.4GHz to 2.5GHz 802.11g/b RF Transceiver, PA, and Rx/Tx/Antenna Diversity Switch

are on, so that Tx or Rx modes can be quickly enabled from this mode. Set $\overline{\text { SHDN }}$ to a logic-low and RXTX to a logic-high to place the device in standby mode.

Receive (Rx) Mode
The complete receive signal path is enabled in this mode. Set SHDN to logic-high and RXTX to logic-low to place the device in Rx mode.

Transmit (Tx) Mode
The complete transmitter signal path is enabled in this mode. Set SHDN and RXTX to logic-high to place the device in Tx mode.

Rx/Tx Calibration Mode

The MAX2830 features Rx/Tx calibration modes to detect I/Q imbalances and transmit LO leakage. In the Tx calibration mode, all Tx circuit blocks, except the PA driver and external PA, are powered on and active. The AM detector and receiver I and Q channel buffers are also on, along with multiplexers in the receiver side to route this AM detector's signal. In this mode, the LO leakage calibration is done only for the LO leakage signal that is present at the center frequency of the channel (i.e., in the middle of the OFDM or QPSK spectrum). The LO leakage calibration includes the effect of all DC offsets in the entire baseband paths of the I/Q modulator and direct leakage of the LO to the I/Q modulator output.
The LO leakage and sideband detector output are taken at the receiver I and Q channel outputs during this calibration phase.
During Tx LO leakage and I/Q imbalance calibration, a sine and cosine signal ($f=f_{\text {TONE }}$) is input to the baseband I/Q Tx pins from the baseband IC. At the LO leakage and sideband-detector output, the LO leakage corresponds to the signal at $\mathrm{f}_{\text {TONE }}$ and the sideband suppression corresponds to the signal at $2 \times f_{\text {TONE }}$. The output power of these signals vary 1 dB for 1 dB of variation in the LO leakage and sideband suppression. To
calibrate the Tx path, first set the power-detector gain to 9dB using D12:D11 in Register 6 (see Table 22). Adjust the DC offset of the baseband inputs to minimize the signal at $\mathrm{f}_{\text {TONE }}$ (LO leakage). Then, adjust the baseband input relative magnitude and phase offsets to reduce the signal at $2 \times \mathrm{f}_{\text {TONE }}$.
In Rx calibration mode, the calibrated Tx RF signal is internally routed to the Rx inputs. In this mode, the VCO/LO generator/PLL blocks are powered on and active except for the low-noise amplifier (LNA).

Applications Information

Layout Issues

The MAX2830 EV kit can be used as a starting point for layout. For best performance, take into consideration grounding and RF, baseband, and power-supply routing. Make connections from vias to the ground plane as short as possible. Do not connect the device ground pin to the exposed paddle ground. Keep the buffered clock output trace as short as possible. Do not share the trace with the RF input layer, especially on or interlayer or back side of the board. On the high-impedance ports, keep traces short to minimize shunt capacitance. EV kit Gerber files can be requested at www.maxim-ic.com.

Power-Supply Layout
To minimize coupling between different sections of the IC, a star power-supply routing configuration with a large decoupling capacitor at a central VCC node is recommended. The Vcc traces branch out from this node, each going to a separate VCC node in the circuit. Place a bypass capacitor as close as possible to each supply pin. This arrangement provides local decoupling at each Vcc pin. Use at least one via per bypass capacitor for a low-inductance ground connection. Do not share the capacitor ground vias with any other branch and the exposed paddle ground.

MAX2830]
2.4GHz to 2.5GHz 802.11g/b RF Transceiver, PA, and Rx/Tx/Antenna Diversity Switch

Figure 4. Timing Diagram

Pin Configuration

Chip Information
PROCESS: BiCMOS
Package Information
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO. 48 TQFN-EP
T4877+4	$\underline{21-0144}$	$\underline{90-0130}$	

MAX2830

2.4GHz to 2.5GHz 802.11g/b RF Transceiver, PA, and Rx/Tx/Antenna Diversity Switch

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$3 / 07$	Initial release	-
1	$7 / 09$	Corrected Table 12	24
2	$3 / 11$	Corrected conditions for Rx I/Q Output Common-Mode Voltage Variation in the DC Electrical Characteristics; corrected Tables 15 and 31; added text to Shutdown Mode section	$2,26,30$

maxim
integrated ${ }_{m}$

[^2]гарантия бесперебойности производства и

О компании

ООО "ТрейдЭлектроникс" - это оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов. Реализуемая нашей компанией продукция насчитывает более полумиллиона наименований.

Благодаря этому наша компания предлагает к поставке практически не ограниченный ассортимент компонентов как оптовыми, мелкооптовыми партиями, так и в розницу.

Наличие собственной эффективной системы логистики обеспечивает надежную поставку продукции по конкурентным ценам в точно указанные сроки.

Срок поставки со стоков в Европе и Америке - от 3 до 14 дней.
Срок поставки из Азии - от 10 дней.
Благодаря развитой сети поставщиков, помогаем в поиске и приобретении экзотичных или снятых с производства компонентов.

Предоставляем спец цены на элементы для создания инженерных сэмплов.

Упорный труд, качественный результат дают нам право быть уверенными в себе и надежными для наших клиентов.

Наша компания это:

Гарантия качества поставляемой продукции
Широкий ассортимент
Минимальные сроки поставок
Техническая поддержка
Подбор комплектации
Индивидуальный подход
Гибкое ценообразование
Наша организация особенно сильна в поставках модулей, микросхем, пассивных компонентов, ксайленсах (XC), EPF, EPM и силовой электроники.

Большой выбор предлагаемой продукции, различные виды оплаты и доставки, позволят Вам сэкономить время и получить максимум выгоды от сотрудничества с нами!

Trade Electronics．ru

гарантия бесперебойности производства и
качества выпускаемой продукции

Перечень производителей，продукцию которых мы поставляем на российский рынок

AMDE	$\square \begin{aligned} & \text { ANALOG } \\ & \text { DEVICES }\end{aligned}$	Botrins	corleraft
élantec	HMrris	（infineon	JRC
FICFEr		nichicon	－ Phlups 3
RaHm	［7\％	【 Sipex	
［畾TOKO	$\underset{1}{7}$	（1）Vinbond	（2llegw：
	Eura－ma\％m	YPEXAR	HITACH
（intel	Lattice	munta	OKI
Qualcomm	Snmsume	SHARP	SONY
险TDK	TOSHIBA	X	Antroa
Anvis	de	G）	FAIRCHILO
нотек\％	International IOR Rectifier	CTUIEM	$\boldsymbol{Q}^{\text {Seationat }}$ Sendictor
50	想reatite	SANYO	eshindengen
5	${ }^{7}$ 1rection	（1）Tund	E．XILINX
Amphenol	Bay Linear	\％${ }^{\text {Ofinusioac }}$	DALLAS
FUjiTSU	9／DT．	intersil，	MAXIM
moler	NEC	Panasonic	renesas
SII ${ }^{\circ}$	SIEMENS	$\triangle \overline{7 /}$	
	$\sqrt{\text { vishax }}$	ZFTEX	

Trade Electronics.ru

гарантия бесперебойности производства и качества выпускаемой продукции

С удовольствием будем прорабатывать для Вас поставки всех необходимых компонентов по текущим запросам для скорейшего выявления групп элементов, по которым сотрудничество именно с нашей компанией будет для Вас максимально выгодным!

С уважением,
Менеджер отдела продаж ООО
«Трейд Электроникс»
Шишлаков Евгений
8 (495)668-30-28 доб 169
manager28@tradeelectronics.ru
http://www.tradeelectronics.ru/

[^0]: $x=$ Don't care.

[^1]: $X=$ Don't care

[^2]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

